Search results
Results from the WOW.Com Content Network
Real-time magnetic resonance imaging of the human thorax during breathing X-ray video of a female American alligator while breathing. Breathing (spiration [1] or ventilation) is the rhythmical process of moving air into and out of the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.
A pulmonary alveolus (pl. alveoli; from Latin alveolus 'little cavity'), also called an air sac or air space, is one of millions of hollow, distensible cup-shaped cavities in the lungs where pulmonary gas exchange takes place. [1] Oxygen is exchanged for carbon dioxide at the blood–air barrier between the alveolar air and the pulmonary ...
Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli, and in birds, they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. [ 2 ]
Exchange of gases in the lung occurs by ventilation and perfusion. [1] Ventilation refers to the in-and-out movement of air of the lungs and perfusion is the circulation of blood in the pulmonary capillaries. [1] In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths.
Bronchial arteries carry oxygenated blood to the lungs; Pulmonary capillaries, where there is exchange of water, oxygen, carbon dioxide, and many other nutrients and waste chemical substances between blood and the tissues; Bronchial veins drain venous blood from the large main bronchi into the azygous vein, and ultimately the right atrium.
The pulmonary arteries carry deoxygenated blood to the lungs, where carbon dioxide is released and oxygen is picked up during respiration. [3] Arteries are further divided into very fine capillaries which are extremely thin-walled. [4] The pulmonary veins return oxygenated blood to the left atrium of the heart. [3]
The lungs of most frogs and other amphibians are simple and balloon-like, with gas exchange limited to the outer surface of the lung. This is not very efficient, but amphibians have low metabolic demands and can also quickly dispose of carbon dioxide by diffusion across their skin in water, and supplement their oxygen supply by the same method.
The increased lung pressure pushes the air out of the lungs. [2] The primary function of ventilation is the replacement of the stale gases in the lungs with oxygen-rich air through the removal of carbon dioxide for oxygenation of the blood. [5] The oxygen is then supplied to the entire body through the circulatory system.