Search results
Results from the WOW.Com Content Network
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. ... The fraction 99 / 70 ...
The entire fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. (For example, two-fifths is the fraction 2 / 5 and two fifths is the same fraction understood as 2 instances of 1 / 5 .) Fractions should always be ...
If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x 1, y 1), z(x 1, y 2), z(x 2, y 1), or ...
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.
The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy. Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. [4]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If this infinite continued fraction converges at all, it must converge to one of the roots of the monic polynomial x 2 + bx + c = 0. Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a monic polynomial with real ...