enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.

  3. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  4. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied. In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism.

  5. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...

  6. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    The Earth and most of the planets in the Solar System, as well as the Sun and other stars, all generate magnetic fields through the motion of electrically conducting fluids. [54] The Earth's field originates in its core. This is a region of iron alloys extending to about 3400 km (the radius of the Earth is 6370 km).

  7. Magnetic reconnection - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reconnection

    Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.

  8. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.

  9. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.