Search results
Results from the WOW.Com Content Network
In general, a common fraction is said to be a proper fraction, if the absolute value of the fraction is strictly less than one—that is, if the fraction is greater than −1 and less than 1. [ 14 ] [ 15 ] It is said to be an improper fraction , or sometimes top-heavy fraction , [ 16 ] if the absolute value of the fraction is greater than or ...
The process of transforming an irrational fraction to a rational fraction is known as rationalization. Every irrational fraction in which the radicals are monomials may be rationalized by finding the least common multiple of the indices of the roots, and substituting the variable for another variable with the least common multiple as exponent.
A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral expression. An integral expression can always be written in fractional form by giving it the denominator 1.
Similarly, there must be a neighborhood of the point at infinity which is mapped into an arbitrarily small neighborhood of Τ n (∞) = A n−1 / B n−1 . So if the continued fraction converges the transformation Τ n (z) maps both very small z and very large z into an arbitrarily small neighborhood of x, the value of the continued ...
This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
An Egyptian fraction is the sum of a finite number of reciprocals of positive integers. According to the proof of the Erdős–Graham problem, if the set of integers greater than one is partitioned into finitely many subsets, then one of the subsets can be used to form an Egyptian fraction representation of 1.
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a ...