Search results
Results from the WOW.Com Content Network
Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.
Differential equations. In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
Calculus. In calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's ...
The most general power rule is the functional power ... Differentiation under the integral sign – Differentiation under ... J. Liu, Schaum's Outline Series ...
A formal power series is a special kind of formal series, of the form. where the called coefficients, are numbers or, more generally, elements of some ring, and the are formal powers of the symbol that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of ...
v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.
Formal derivative. In mathematics, the formal derivative is an operation on elements of a polynomial ring or a ring of formal power series that mimics the form of the derivative from calculus. Though they appear similar, the algebraic advantage of a formal derivative is that it does not rely on the notion of a limit, which is in general ...
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.