Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
The dispersion characteristics of the Earth-ionospheric waveguide can be used for locating thunderstorm activity by measurements of the difference of the group time delay of lightning signals at adjacent frequencies up to distances of 10000 km. [7] The Schumann resonances allow to determine the global lightning activity. [9]
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
Fundamental frequency of the Schumann resonances: 10 1: 10 hertz 10 Hz: Cyclic rate of a typical automobile engine at idle (equivalent to 600 rpm) 12 Hz: Acoustic – the lowest possible frequency that a human can hear [3] 18 Hz: Average house cat's purr 24 Hz: Common frame rate of movies 27.5 Hz
The Schumann resonances are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonance is due to the space between the surface of the Earth and the conductive ionosphere acting as a waveguide. The limited dimensions of the earth cause this waveguide to act as a resonant ...
As shown in the figure, resonance may also occur at other frequencies near the resonant frequency, including ω 0, but the maximum response is at the resonant frequency. Also, ω r is only real and non-zero if ζ < 1 / 2 {\textstyle \zeta <1/{\sqrt {2}}} , so this system can only resonate when the harmonic oscillator is significantly underdamped.
Those frequencies vary with sea level, weather, and solar activity. In other words: that 14.x Hz frequency is not a constant. tgeorgescu 22:02, 19 March 2024 (UTC) The Montinel source says: "The average fundamental mode of resonance is around 7.8 Hz, and the rest of modes are 14, 20, 26, 33, 39, and 45 Hz with slight diurnal variation."
A frequency vs. time plot (spectrogram) showing several whistler signals amidst a background of sferics as received at Palmer Station, Antarctica on August 24, 2005.A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges.