Search results
Results from the WOW.Com Content Network
The speed of sound increases with height in two regions of the stratosphere and thermosphere, due to heating effects in these regions. Mach number is a measure of the compressibility characteristics of fluid flow : the fluid (air) behaves under the influence of compressibility in a similar manner at a given Mach number, regardless of other ...
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: Ballistic trajectory - no other forces are acting on the object, including propulsion and friction. No other gravity-producing objects exist. Although the term escape velocity is ...
The roughness length plays a part in determining the slope of the line. Roughness length ( ) is a parameter of some vertical wind profile equations that model the horizontal mean wind speed near the ground. In the log wind profile, it is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing ...
Terminal velocity. The downward force of gravity (Fg) equals the restraining force of drag (Fd) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
Wind gradient. In common usage, wind gradient, more specifically wind speed gradient[1] or wind velocity gradient, [2] or alternatively shear wind, [3] is the vertical component of the gradient of the mean horizontal wind speed in the lower atmosphere. [4] It is the rate of increase of wind strength with unit increase in height above ground ...