Search results
Results from the WOW.Com Content Network
Simulation of an airplane using Open VOGEL, an open source framework for aerodynamic simulations based in the UVLM. The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level.
Clark Y is the name of a particular airfoil profile, widely used in general purpose aircraft designs, and much studied in aerodynamics over the years. The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1]
Years of research and experience with the unusual conditions of supersonic flow have led to some interesting conclusions about airfoil design. Considering a rectangular wing, the pressure at a point P with coordinates (x,y) on the wing is defined only by the pressure disturbances originated at points within the upstream Mach cone emanating from point P. [3] As result, the wing tips modify the ...
x b axis - positive out the nose of the aircraft in the plane of symmetry of the aircraft; z b axis - perpendicular to the x b axis, in the plane of symmetry of the aircraft, positive below the aircraft; y b axis - perpendicular to the x b,z b-plane, positive determined by the right-hand rule (generally, positive out the right wing) Wind frame
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force with respect to the aerodynamic center on the airfoil . The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer. [1]:
Anderson, John D. (2007), Fundamentals of Aerodynamics, Section 3.4 (4th edition), McGraw-Hill, New York USA. ISBN 978-0-07-295046-5 Gracey, William (1980), "Measurement of Aircraft Speed and Altitude" Archived 2021-09-26 at the Wayback Machine (11 MB), NASA Reference Publication 1046.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.