Search results
Results from the WOW.Com Content Network
William Gilbert Strang (born November 27, 1934 [1]) is an American mathematician known for his contributions to finite element theory, the calculus of variations, wavelet analysis and linear algebra. He has made many contributions to mathematics education, including publishing mathematics textbooks.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
He is the author of a textbook on Tensor Calculus (2013) as well as an e-workbook on Linear Algebra. He has recorded hundreds of video lectures; several dozen on Tensors (in a video course which may accompany his textbook) as well as over a hundred shorter videos on linear algebra. Many of these are available on YouTube as well as other sites.
Download as PDF; Printable version; In other projects ... Linear algebra is the branch of mathematics concerning linear equations such as: ... Gilbert (2016 ...
English: Linear Algebra by Jim Hefferon, along with its answers to exercises, is a text for a first undergraduate course. It is Free. Use it as the main book, as a supplement, or for independent study.
The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M ; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f ) and the nullity of f (the dimension of the kernel of f ).
The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.