enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  3. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight. Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping ...

  4. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  5. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are collinear.

  6. Incidence geometry - Wikipedia

    en.wikipedia.org/wiki/Incidence_geometry

    In a projective plane, every non-collinear set of n points determines at least n distinct lines. As the authors pointed out, since their proof was combinatorial, the result holds in a larger setting, in fact in any incidence geometry in which there is a unique line through every pair of distinct points.

  7. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    The projective linear group of n-space = (+) has (n + 1) 2 − 1 dimensions (because it is (,) = ((+,)), projectivization removing one dimension), but in other dimensions the projective linear group is only 2-transitive – because three collinear points must be mapped to three collinear points (which is not a restriction in the projective line ...

  8. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: [2] Given a point and a line, there is a unique line which contains the point and is parallel to the line.

  9. Projective harmonic conjugate - Wikipedia

    en.wikipedia.org/wiki/Projective_harmonic_conjugate

    In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C, let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively.