Search results
Results from the WOW.Com Content Network
Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years. Plutonium in bone has a biological half-life of about 100 years.
The elimination half-life is how long it takes for half of the drug to be eliminated by the body. "Time to peak" refers to when maximum levels of the drug in the blood occur after a given dose. "Time to peak" refers to when maximum levels of the drug in the blood occur after a given dose.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time. The original term, half-life period, dating to Ernest Rutherford's discovery of the principle in 1907, was shortened to half-life in the early 1950s. [1]
The rate at which a drug enters into the body for oral and other extravascular routes. 0.693 h −1: Elimination half-life: The time required for the concentration of the drug to reach half of its original value.
When radionuclides are used pharmacologically, for example in radiation therapy, they are eliminated through a combination of radioactive decay and biological excretion.An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula:
Context-sensitive half-life or context sensitive half-time is defined as the time taken for blood plasma concentration of a drug to decline by one half after an infusion designed to maintain a steady state (i.e. a constant plasma concentration) has been stopped. The "context" is the duration of infusion.
The unchanged drug was 96% bound to plasma proteins. The blood-level decline of the parent drug was biphasic, with the short half-life ranging from 0.4 to 0.6 hours and the terminal half-life from 3.5 to 18.4 hours (mean 8.8 hours), depending on the study population and method of determination. [62]