Search results
Results from the WOW.Com Content Network
Structure of the amylose molecule Structure of the amylopectin molecule. Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage.
Amylopectin / ˌ æ m ɪ l oʊ ˈ p ɛ k t ɪ n / is a water-insoluble [1] [2] polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose. Relation of amylopectin to starch granule. Plants store starch within specialized organelles called amyloplasts. To ...
Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]
Glycogen is analogous to starch, a glucose polymer in plants, and is sometimes referred to as animal starch, [16] having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked with α(1→6)-linked branches.
Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt. [4] Unlike sucrose, it is a reducing sugar. [5]
Chemical structure of the three main types of cyclodextrins. Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion.
Starch is stored in the amyloplasts, a specialized organelle found within plant cells, as starch grains. [4] The starch grain is specifically important for study due to the fact that it is commonly found in most plants, its long-lasting nature, as well as the diverse forms and structures that they can take based on which taxa they belong to. [4]
Statoliths, a specialized starch-accumulating amyloplast, are denser than cytoplasm, and are able to settle to the bottom of the gravity-sensing cell, called a statocyte. [5] This settling is a vital mechanism in plant's perception of gravity, triggering the asymmetrical distribution of auxin that causes the curvature and growth of stems ...