Search results
Results from the WOW.Com Content Network
These reactions have different functions in cells. The reaction involving acetyl-CoA and butyrate (EC 2.8.3.8), for example, forms butyrate during fermentation. [3] The reaction involving acetyl-CoA and succinate (EC 2.8.3.18) is part of a modified TCA cycle [4] or forms acetate during fermentation. [5]
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate , and around 4% of cellular enzymes use it (or a thioester ) as a substrate.
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
Structure of acetyl coenzyme A, a thioester that is a key intermediate in the biosynthesis of many biomolecules. Thioesters are common intermediates in many biosynthetic reactions, including the formation and degradation of fatty acids and mevalonate , precursor to steroids.
In enzymology, a formyl-CoA transferase (EC 2.8.3.16) is an enzyme that catalyzes the chemical reaction. formyl-CoA + oxalate formate + oxalyl-CoA. Thus, the two substrates of this enzyme are formyl-CoA and oxalate, whereas its two products are formate and oxalyl-CoA.
The medium chain acyl-CoA dehydrogenase (MCAD) is the best known structure of all ACADs, and is the most commonly deficient enzyme within the class that leads to metabolic disorders in animals. [1] This protein is a homotetramer with each subunit containing roughly 400 amino acids and one equivalent of FAD per monomer.
In biochemistry, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway.
In enzymology, an acetate CoA-transferase (EC 2.8.3.8) is an enzyme that catalyzes the chemical reaction. acyl-CoA + acetate a fatty acid anion + acetyl-CoA. Thus, the two substrates of this enzyme are acyl-CoA and acetate, whereas its two products are long-chain carboxylate anion and acetyl-CoA.