enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  3. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random sample.

  4. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    According to this formula, the power increases with the values of the effect size and the sample size n, and reduces with increasing variability . In the trivial case of zero effect size, power is at a minimum ( infimum ) and equal to the significance level of the test α , {\displaystyle \alpha \,,} in this example 0.05.

  5. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances would not be very powerful. Since the sample sizes are equal, the two forms of the two-sample t-test will perform similarly in this example.

  6. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the first example provided above, the sex of the patient would be a nuisance variable. For example, consider if the drug was a diet pill and the researchers wanted to test the effect of the diet pills on weight loss. The explanatory variable is the diet pill and the response variable is the amount of weight loss.

  7. A/B testing - Wikipedia

    en.wikipedia.org/wiki/A/B_testing

    A/B testing (also known as bucket testing, split-run testing, or split testing) is a user experience research method. [1] A/B tests consist of a randomized experiment that usually involves two variants (A and B), [ 2 ] [ 3 ] [ 4 ] although the concept can be also extended to multiple variants of the same variable.

  8. Action research - Wikipedia

    en.wikipedia.org/wiki/Action_Research

    Action research is a philosophy and methodology of research generally applied in the social sciences. It seeks transformative change through the simultaneous process ...

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically involves a significant human component, and is typically specific to the dataset and the analytical problem, and therefore takes time and money. For example: