Search results
Results from the WOW.Com Content Network
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
The operational calculus generally is typified by two symbols: the operator p, and the unit function 1. The operator in its use probably is more mathematical than physical, the unit function more physical than mathematical. The operator p in the Heaviside calculus initially is to represent the time differentiator d / dt .
In mathematics, and in particular functional analysis, the shift operator, also known as the translation operator, is an operator that takes a function x ↦ f(x) to its translation x ↦ f(x + a). [1] In time series analysis, the shift operator is called the lag operator.
[1] Funding for Operation Momentum ended on 30 September 1974. As G. McMurtrie Godley stated about the dreadful human cost: "We used the Meo (Hmong). The rationale...was that they tied down three first-rate North Vietnamese divisions that otherwise would have been used against our men in South Vietnam. It was a dirty business." [26]
The definition of angular momentum for a single point particle is: = where p is the particle's linear momentum and r is the position vector from the origin. The time-derivative of this is: The time-derivative of this is:
Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes F i. [1]
The units and nature of each generalized momentum will depend on the corresponding coordinate; in this case p z is a translational momentum in the z direction, p s is also a translational momentum along the curve s is measured, and p φ is an angular momentum in the plane the angle φ is measured in. However complicated the motion of the system ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.