enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).

  3. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  4. Operational calculus - Wikipedia

    en.wikipedia.org/wiki/Operational_calculus

    The operational calculus generally is typified by two symbols: the operator p, and the unit function 1. The operator in its use probably is more mathematical than physical, the unit function more physical than mathematical. The operator p in the Heaviside calculus initially is to represent the time differentiator ⁠ d / dt ⁠.

  5. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.

  6. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Momentum space is the set of all momentum vectors p a physical system can have; the momentum vector of a particle corresponds to its motion, with dimension of mass ⋅ length ⋅ time −1. Mathematically, the duality between position and momentum is an example of Pontryagin duality .

  7. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    The derivation in three dimensions is the same, except the gradient operator del is used instead of one partial derivative. In three dimensions, the plane wave solution to Schrödinger's equation is: = and the gradient is = + + = (+ +) = where e x, e y, and e z are the unit vectors for the three spatial dimensions, hence ^ =

  8. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The sources of any gravitational field (matter and energy) is represented in relativity by a type (0, 2) symmetric tensor called the energy–momentum tensor. It is closely related to the Ricci tensor. Being a second rank tensor in four dimensions, the energy–momentum tensor may be viewed as a 4 by 4 matrix.

  9. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.