enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    Here i represents the equation number, r = 1, …, R is the individual observation, and we are taking the transpose of the column vector. The number of observations R is assumed to be large, so that in the analysis we take R → ∞ {\displaystyle \infty } , whereas the number of equations m remains fixed.

  3. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    To conduct chi-square analyses, one needs to break the model down into a 2 × 2 or 2 × 1 contingency table. [ 2 ] For example, if one is examining the relationship among four variables, and the model of best fit contained one of the three-way interactions, one would examine its simple two-way interactions at different levels of the third variable.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In the formula above we consider n observations of one dependent variable and p independent variables. Thus, Y i is the i th observation of the dependent variable, X ij is i th observation of the j th independent variable, j = 1, 2, ..., p. The values β j represent parameters to be estimated, and ε i is the i th independent identically ...

  6. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Illustration of training a Random Forest model. The training dataset (in this case, of 250 rows and 100 columns) is randomly sampled with replacement n times. Then, a decision tree is trained on each sample. Finally, for prediction, the results of all n trees are aggregated to produce a final decision.

  8. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model. In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors.

  9. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. [ 1 ]