Search results
Results from the WOW.Com Content Network
Capacitive coupling is the transfer of energy within an electrical network or between distant networks by means of displacement current between circuit(s) nodes, induced by the electric field. This coupling can have an intentional or accidental effect. Capacitive coupling from high-voltage power lines can light a lamp continuously at low intensity.
In electronics, direct coupling or DC coupling (also called conductive coupling [1] and galvanic coupling) is the transfer of electrical energy by means of physical contact via a conductive medium, in contrast to inductive coupling and capacitive coupling.
Coupling can be deliberate as part of the function of the circuit, or it may be undesirable, for instance due to coupling to stray fields. For example, energy is transferred from a power source to an electrical load by means of conductive coupling, which may be either resistive or direct coupling.
Summation of the inductive and capacitive coupling coefficients is performed by formula [3] = + +. (8) This formula is derived from the definition (6) and formulas (4) and (7). Note that the sign of the coupling coefficient itself is of no importance. Frequency response of the filter will not change if signs of all the coupling coefficients ...
The capacitor acts like a short circuit to the high frequency RF field, but like an open circuit to direct current (DC) field. Electrons impinge on the electrode in the sheath , and the electrode quickly acquires a negative charge (or self-bias) because the capacitor does not allow it to discharge to ground.
There are four basic coupling mechanisms: conductive, capacitive, magnetic or inductive, and radiative. Any coupling path can be broken down into one or more of these coupling mechanisms working together. Conductive coupling occurs when the coupling path between the source and victim is formed by direct electrical contact with a conducting body.
There are several practical approaches to the design of an OTL amplifier's output section, each with their own respective strengths and weaknesses. While certain topologies lend themselves well to direct coupling, others are more suitable for capacitive coupling.
In capacitive coupling (electrostatic induction), the conjugate of inductive coupling, energy is transmitted by electric fields [4] [13] [5] [7] between electrodes [6] such as metal plates. The transmitter and receiver electrodes form a capacitor , with the intervening space as the dielectric .