Search results
Results from the WOW.Com Content Network
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies: Buoyancy force = weight of object in empty space − weight of object immersed in fluid. The final result would be measured in Newtons. Air's density is very small compared to most solids and liquids.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid. Submerged specific gravity is equal to the specific gravity given by the ratio of the weight of the object to the weight of the fluid) minus one. That is, the object and fluid have the same density when the specific gravity equals one ...
A density meter does not measure the specific gravity of a sample directly. However, the specific gravity can be inferred from a density meter. The specific gravity is defined as the density of a sample compared to the density of a reference. The reference density is typically of that of water. The specific gravity is found by the following ...
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
The block would still weigh 3 kilograms on dry land (ignoring the weight of air in the cavity) but it would now displace 2 liters of water so its immersed weight would be only 1 kilogram (at 4 °C). In either of the examples above, the correct density can be calculated by the following equation: [ 2 ]