enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation: ⁡ + ⁡ =.

  3. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  4. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  5. Null (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Null_(mathematics)

    A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element). For example, in linear algebra, the null space of a linear mapping, also known as kernel, is the set of vectors which map to the null vector under that mapping.

  6. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.

  7. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    For matrices in mathematical notation, the first index indicates the row, and the second indicates the column, e.g., given a matrix , the entry , is in its first row and second column. This convention is carried over to the syntax in programming languages, [ 2 ] although often with indexes starting at 0 instead of 1.

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called the algebraic multiplicity of the eigenvalue. [3] [4] [5] If the operator is originally given by a square matrix M, then its Jordan normal form is also called the Jordan normal form of M. Any square matrix has ...

  9. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    The last row of is the vector shifted by one in reverse. Different sources define the circulant matrix in different ways, for example as above, or with the vector c {\displaystyle c} corresponding to the first row rather than the first column of the matrix; and possibly with a different direction of shift (which is sometimes called an anti ...