enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The alternative hypothesis corresponds to the position against the defendant. Specifically, the null hypothesis also involves the absence of a difference or the absence of an association. Thus, the null hypothesis can never be that there is a difference or an association.

  4. Null distribution - Wikipedia

    en.wikipedia.org/wiki/Null_distribution

    Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution

  5. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  6. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  7. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Assuming H 0 is true, there is a fundamental result by Samuel S. Wilks: As the sample size approaches , and if the null hypothesis lies strictly within the interior of the parameter space, the test statistic defined above will be asymptotically chi-squared distributed with degrees of freedom equal to the difference in dimensionality of and . [14]

  8. Bartlett's test - Wikipedia

    en.wikipedia.org/wiki/Bartlett's_test

    Thus, the null hypothesis is rejected if >, (where , is the upper tail critical value for the distribution). Bartlett's test is a modification of the corresponding likelihood ratio test designed to make the approximation to the χ k − 1 2 {\displaystyle \chi _{k-1}^{2}} distribution better (Bartlett, 1937).

  9. Null result - Wikipedia

    en.wikipedia.org/wiki/Null_result

    In science, a null result is a result without the expected content: that is, the proposed result is absent. [1] It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis .