enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Low-temperature technology timeline - Wikipedia

    en.wikipedia.org/wiki/Low-temperature_technology...

    The following is a timeline of low-temperature technology and cryogenic technology (refrigeration down to close to absolute zero, i.e. –273.15 °C, −459.67 °F or 0 K). [1] It also lists important milestones in thermometry , thermodynamics , statistical physics and calorimetry , that were crucial in development of low temperature systems.

  3. Cryogenics - Wikipedia

    en.wikipedia.org/wiki/Cryogenics

    Nitrogen is a liquid under −195.8 °C (77.3 K).. In physics, cryogenics is the production and behaviour of materials at very low temperatures.. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of "cryogenics" and "cryogenic" by accepting a threshold of 120 K (−153 °C) to ...

  4. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    For example, if the change is an increase in temperature at constant volume, with no phase change and no chemical change, then the temperature of the body rises and its pressure increases. The quantity of heat transferred, Δ Q , divided by the observed temperature change, Δ T , is the body's heat capacity at constant volume:

  5. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature.

  6. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The ...

  7. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    An example of a system that does not have a unique ground state is one whose net spin is a half-integer, for which time-reversal symmetry gives two degenerate ground states. For such systems, the entropy at zero temperature is at least k B ln(2) (which is negligible on a macroscopic scale).

  8. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The temperature reached in a process was estimated by the shrinkage of a sample of clay. The higher the temperature, the more the shrinkage. This was the only available more or less reliable method of measurement of temperatures above 1000 °C (1,832 °F). But such shrinkage is irreversible. The clay does not expand again on cooling.

  9. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_condensate

    Einstein proposed that cooling bosonic atoms to a very low temperature would cause them to fall (or "condense") into the lowest accessible quantum state, resulting in a new form of matter. Bosons include the photon , polaritons , magnons , some atoms and molecules (depending on the number of nucleons , see #Isotopes ) such as atomic hydrogen ...