enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    It follows from the equivalence () that the row rank is equal to the column rank. As in the case of the "dimension of image" characterization, this can be generalized to a definition of the rank of any linear map: the rank of a linear map f : V → W is the minimal dimension k of an intermediate space X such that f can be written as the ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above).

  5. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.

  6. Rank (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Rank_(graph_theory)

    Equivalently, the rank of a graph is the rank of the oriented incidence matrix associated with the graph. [2] Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti ...

  7. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of M is given by m − n + c, where, c is the number of components of the graph and n − c is the rank of the oriented incidence matrix. This name is rarely used; the number is more commonly known as the cycle rank, cyclomatic number, or circuit rank of the graph. It is equal to the rank of the cographic matroid of the graph.

  8. Size (statistics) - Wikipedia

    en.wikipedia.org/wiki/Size_(statistics)

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  9. High-dimensional statistics - Wikipedia

    en.wikipedia.org/wiki/High-dimensional_statistics

    In fact, statistical inference in high dimensions is intrinsically hard, a phenomenon known as the curse of dimensionality, and it can be shown that no estimator can do better in a worst-case sense without additional information (see Example 15.10 [2]). Nevertheless, the situation in high-dimensional statistics may not be hopeless when the data ...