Search results
Results from the WOW.Com Content Network
Even in curved spacetime, Minkowski space is still a good description in an infinitesimal region surrounding any point (barring gravitational singularities). [ nb 5 ] More abstractly, it can be said that in the presence of gravity spacetime is described by a curved 4-dimensional manifold for which the tangent space to any point is a 4 ...
The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...
The geometrical approach to studying spacetime is considered one of the best methods for developing a modern intuition. [37] The twin paradox is a thought experiment involving identical twins, one of whom makes a journey into space in a high-speed rocket, returning home to find that the twin who remained on Earth has aged more. This result ...
In "simple" examples of spacetime metrics the light cone is directed forward in time. This corresponds to the common case that an object cannot be in two places at once, or alternately that it cannot move instantly to another location. In these spacetimes, the worldlines of physical objects are, by definition, timewise.
Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy , as expressed in the mass–energy equivalence formula E = m c 2 {\displaystyle E=mc^{2}} , where c {\displaystyle ...
In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an observer moving with a velocity v of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer.
Frame fields of a Lorentzian manifold always correspond to a family of ideal observers immersed in the given spacetime; the integral curves of the timelike unit vector field are the worldlines of these observers, and at each event along a given worldline, the three spacelike unit vector fields specify the spatial triad carried by the observer.
Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime.