enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  3. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Real-root isolation is useful because usual root-finding algorithms for computing the real roots of a polynomial may produce some real roots, but, cannot generally certify having found all real roots. In particular, if such an algorithm does not find any root, one does not know whether it is because there is no real root.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula; n th root algorithm

  5. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  6. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −2, −1 (repeated root), and −1/3 of the quartic 3x 4 +13x 3 +19x 2 +11x+2 using Lill's method. Black segments are labeled with their lengths (coefficients in the equation), while each colored line with initial slope m and the same endpoint corresponds to a real root.

  7. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none. This principle can be proven by reference to the intermediate value theorem : since polynomial functions are continuous , the function value must cross zero, in the process of changing from ...

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real coefficients, it is often useful to bound only the real roots. It suffices to bound the positive roots, as the negative roots of p(x) are the positive roots of p(–x). Clearly, every bound of all roots applies also for real roots. But in some contexts, tighter bounds of real roots are useful.

  9. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;