Search results
Results from the WOW.Com Content Network
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three. The scaling is uniform if and only if the scaling factors are equal (v x = v y = v z). If all except one of the scale factors ...
The azimuth φ = −60° measures the dihedral angle between the green xz half-plane and the yellow half-plane that includes the point P. The Cartesian coordinates of P are roughly (1.09, −1.89, 1.66) .
The scale factors for the elliptic coordinates (,) are equal to = = + = . Using the double argument identities for hyperbolic functions and trigonometric functions, the scale factors can be equivalently expressed as
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
The point scale factor is independent of direction. It is a function of y on the projection. (On the sphere it depends on latitude only.) The scale is true on the equator. • The point scale factor is independent of direction. It is a function of x on the projection. (On the sphere it depends on both latitude and longitude.)
The solid angle of a sphere measured from any point in its interior is 4 π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2 π /3 sr. The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [1]
In each zone the scale factor of the central meridian reduces the diameter of the transverse cylinder to produce a secant projection with two standard lines, or lines of true scale, about 180 km on each side of, and about parallel to, the central meridian (Arc cos 0.9996 = 1.62° at the Equator). The scale is less than 1 inside the standard ...
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.