enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    Unlike the ordinary Pochhammer symbol, the q-Pochhammer symbol can be extended to an infinite product: (;) = = (). This is an analytic function of q in the interior of the unit disk, and can also be considered as a formal power series in q.

  4. Hyperharmonic number - Wikipedia

    en.wikipedia.org/wiki/Hyperharmonic_number

    3 Generating function and infinite series. 4 Integer hyperharmonic numbers. ... Download as PDF; Printable version; ... The generalization of the identity =! [+ ...

  5. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +. The first n {\displaystyle n} terms of the series sum to approximately ln ⁡ n + γ {\displaystyle \ln n+\gamma } , where ln {\displaystyle \ln } is the natural logarithm and γ ≈ 0.577 {\displaystyle \gamma \approx 0.577 ...

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The same definition can be used for series = whose terms are not numbers but rather elements of an arbitrary abelian topological group.In that case, instead of using the absolute value, the definition requires the group to have a norm, which is a positive real-valued function ‖ ‖: + on an abelian group (written additively, with identity element 0) such that:

  8. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    for every ε > 0, and whether the corresponding series of the f(n) still diverges. Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]