Search results
Results from the WOW.Com Content Network
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
This process can be extended to find cube roots that are 3 digits long, by using arithmetic modulo 11. [3] These types of tricks can be used in any root where the order of the root is coprime with 10; thus it fails to work in square root, since the power, 2, divides into 10. 3 does not divide 10, thus cube roots work.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: x 6 − 9 x 3 + 8 = 0. {\displaystyle x^{6}-9x^{3}+8=0.} Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem ).
Let = + + +be a polynomial, and , …, be its complex roots (not necessarily distinct). For any constant c, the polynomial whose roots are +, …, + is = = + + +.If the coefficients of P are integers and the constant = is a rational number, the coefficients of Q may be not integers, but the polynomial c n Q has integer coefficients and has the same roots as Q.
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]