enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  3. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    This process can be extended to find cube roots that are 3 digits long, by using arithmetic modulo 11. [3] These types of tricks can be used in any root where the order of the root is coprime with 10; thus it fails to work in square root, since the power, 2, divides into 10. 3 does not divide 10, thus cube roots work.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  6. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: x 6 − 9 x 3 + 8 = 0. {\displaystyle x^{6}-9x^{3}+8=0.} Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem ).

  8. Polynomial transformation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_transformation

    Let = + + +be a polynomial, and , …, be its complex roots (not necessarily distinct). For any constant c, the polynomial whose roots are +, …, + is = = + + +.If the coefficients of P are integers and the constant = is a rational number, the coefficients of Q may be not integers, but the polynomial c n Q has integer coefficients and has the same roots as Q.

  9. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]