Search results
Results from the WOW.Com Content Network
A fixed-point data type uses the same, implied, denominator for all numbers. The denominator is usually a power of two.For example, in a hypothetical fixed-point system that uses the denominator 65,536 (2 16), the hexadecimal number 0x12345678 (0x1234.5678 with sixteen fractional bits to the right of the assumed radix point) means 0x12345678/65536 or 305419896/65536, 4660 + the fractional ...
Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02. Representing other real numbers as decimals would require an infinite sequence of digits to the right of the decimal point.
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
Compared with the fixed-point number system, the floating-point number system is more efficient in representing real numbers so it is widely used in modern computers. While the real numbers R {\displaystyle \mathbb {R} } are infinite and continuous, a floating-point number system F {\displaystyle F} is finite and discrete.
In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction.
Some real numbers have two infinite decimal representations. For example, the number 1 may be equally represented by 1.000... as by 0.999... (where the infinite sequences of trailing 0's or 9's, respectively, are represented by "..."). Conventionally, the decimal representation without trailing 9's is preferred.
For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...
25.01, 25.1 are rounded to 26. In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary),