Search results
Results from the WOW.Com Content Network
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
A geometric way of deriving the sine or cosine of 45° is by considering an isosceles right triangle with leg length 1. Since two of the angles in an isosceles triangle are equal, if the remaining angle is 90° for a right triangle, then the two equal angles are each 45°.
There are many ways of deriving the fundamental cosine and sine rules and the other rules developed in the following sections. For example, Todhunter [1] gives two proofs of the cosine rule (Articles 37 and 60) and two proofs of the sine rule (Articles 40 and 42). The page on Spherical law of cosines gives
Approximately equal behavior of some (trigonometric) functions for x → 0. For small angles, the trigonometric functions sine, cosine, and tangent can be calculated with reasonable accuracy by the following simple approximations:
Fig. 1a – Sine and cosine of an angle θ defined using the unit circle Indication of the sign and amount of key angles according to rotation direction. Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37]