enow.com Web Search

  1. Ads

    related to: eigenvalue perturbation problems worksheet pdf kuta free geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  3. Weyl's inequality - Wikipedia

    en.wikipedia.org/wiki/Weyl's_inequality

    Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values. [1] This result gives the bound for the perturbation in the singular values of a matrix M {\displaystyle M} due to an additive perturbation Δ {\displaystyle \Delta } :

  4. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    In the meantime, Joseph Liouville studied eigenvalue problems similar to those of Sturm; the discipline that grew out of their work is now called Sturm–Liouville theory. [14] Schwarz studied the first eigenvalue of Laplace's equation on general domains towards the end of the 19th century, while Poincaré studied Poisson's equation a few years ...

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...

  7. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    If there exists an eigenvalue λ of A with Re(λ) > 0 then the solution is unstable for t → ∞. Application of this result in practice, in order to decide the stability of the origin for a linear system, is facilitated by the Routh–Hurwitz stability criterion. The eigenvalues of a matrix are the roots of its characteristic polynomial.

  8. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In case of a symmetric matrix it is the absolute value of the quotient of the largest and smallest eigenvalue. Matrices with large condition numbers can cause numerically unstable results: small perturbation can result in large errors. Hilbert matrices are the most famous ill-conditioned matrices.

  9. Bloch's theorem - Wikipedia

    en.wikipedia.org/wiki/Bloch's_theorem

    If we apply the time-independent Schrödinger equation to the Bloch wave function we obtain ^ = [(+) + ()] = with boundary conditions = (+) Given this is defined in a finite volume we expect an infinite family of eigenvalues; here is a parameter of the Hamiltonian and therefore we arrive at a "continuous family" of eigenvalues () dependent on ...

  1. Ads

    related to: eigenvalue perturbation problems worksheet pdf kuta free geometry