Search results
Results from the WOW.Com Content Network
A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response.
Regulation of gene expression by a hormone receptor Diagram showing at which stages in the DNA-mRNA-protein pathway expression can be controlled. Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA).
This could be damaging to cells and could have detrimental effects on the organism as a whole. The control that licensing factors exert over the cycle represents a flexible system, necessary so that different cell types in an organism can control the timing of DNA replication to their own cell cycles.
A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and viruses.
Transcription factors may be activated (or deactivated) through their signal-sensing domain by a number of mechanisms including: ligand binding – Not only is ligand binding able to influence where a transcription factor is located within a cell but ligand binding can also affect whether the transcription factor is in an active state and ...
In order to repair damage to one of the two paired molecules of DNA, there exist a number of excision repair mechanisms that remove the damaged nucleotide and replace it with an undamaged nucleotide complementary to that found in the undamaged DNA strand.
The ability of the immune system to recognize molecules that are broadly shared by pathogens is, in part, due to the presence of immune receptors called toll-like receptors (TLRs) that are expressed on the membranes of leukocytes including dendritic cells, macrophages, natural killer cells, cells of the adaptive immunity T cells, and B cells, and non-immune cells (epithelial and endothelial ...
The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes.