enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weka (software) - Wikipedia

    en.wikipedia.org/wiki/Weka_(software)

    In version 3.7.2, a package manager was added to allow the easier installation of extension packages. [6] Some functionality that used to be included with Weka prior to this version has since been moved into such extension packages, but this change also makes it easier for others to contribute extensions to Weka and to maintain the software, as this modular architecture allows independent ...

  3. Cobweb (clustering) - Wikipedia

    en.wikipedia.org/wiki/Cobweb_(clustering)

    COBWEB is an incremental system for hierarchical conceptual clustering. COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University. [1] [2] COBWEB incrementally organizes observations into a classification tree. Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept ...

  4. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...

  7. Locality-sensitive hashing - Wikipedia

    en.wikipedia.org/wiki/Locality-sensitive_hashing

    In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.

  8. FAME (database) - Wikipedia

    en.wikipedia.org/wiki/FAME_(database)

    March 2006: Support for 64-bit Linux and UNIX introduced in FAME 9.2; FAME 9.2 also added new 4GL debugging features, analytical functions, graphics, and reporting improvements. Other core 4GL features included the MOVE function and new forms of the SHIFT and FILESPEC functions. The FAME SEARCH command was enhanced with the PATH option.

  9. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  1. Related searches wholesale customers dataset clustering python 8 in linux 64-bit operating system

    number of clusters in a datasethow to find clusters in dataset