enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brønsted–Lowry acid–base theory - Wikipedia

    en.wikipedia.org/wiki/Brønsted–Lowry_acid...

    The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.

  3. Lewis acids and bases - Wikipedia

    en.wikipedia.org/wiki/Lewis_acids_and_bases

    A Lewis base is also a Brønsted–Lowry base, but a Lewis acid does not need to be a Brønsted–Lowry acid. The classification into hard and soft acids and bases ( HSAB theory ) followed in 1963. The strength of Lewis acid-base interactions, as measured by the standard enthalpy of formation of an adduct can be predicted by the Drago–Wayland ...

  4. Category:Bases (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Category:Bases_(chemistry)

    Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.

  5. Base (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Base_(chemistry)

    A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...

  6. Acid–base reaction - Wikipedia

    en.wikipedia.org/wiki/Acid–base_reaction

    In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

  7. Conjugate (acid-base theory) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(acid-base_theory)

    In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications. For example, besides buffers being used in lab processes, human blood acts as a buffer to maintain pH.

  8. Amphoterism - Wikipedia

    en.wikipedia.org/wiki/Amphoterism

    According to the Brønsted-Lowry theory of acids and bases, acids are proton donors and bases are proton acceptors. [6] An amphiprotic molecule (or ion) can either donate or accept a proton , thus acting either as an acid or a base .

  9. Acid catalysis - Wikipedia

    en.wikipedia.org/wiki/Acid_catalysis

    In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.