Ad
related to: proofs of general identities sets of linear algebra 5th
Search results
Results from the WOW.Com Content Network
set is smaller than its power set; uncountability of the real numbers; Cantor's first uncountability proof. uncountability of the real numbers; Combinatorics; Combinatory logic; Co-NP; Coset; Countable. countability of a subset of a countable set (to do) Angle of parallelism; Galois group. Fundamental theorem of Galois theory (to do) Gödel number
To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).
In linear algebra and operator theory, the resolvent set of a linear operator is a set of complex numbers for which the operator is in some sense "well-behaved". The resolvent set plays an important role in the resolvent formalism .
List of logarithmic identities; List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916). It is often used to derive binomial identities, most notably Dixon's identity.
P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the
In mathematics, Schur's lemma [1] is an elementary but extremely useful statement in representation theory of groups and algebras.In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0.
Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799 [1] (which was refined and completed in 1813 [2] and accepted by Cauchy) and Niels Henrik Abel, who provided a proof in 1824. [3] [4]
Ad
related to: proofs of general identities sets of linear algebra 5th