enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  3. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    We present an example described in (Butcher, 1996). [7] This method consists of a single "predicted" step and "corrected" step, which uses extra information about the time history, as well as a single intermediate stage value. An intermediate stage value is defined as something that looks like it came from a linear multistep method:

  4. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    A linear multistep method is zero-stable if all roots of the characteristic equation that arises on applying the method to ′ = have magnitude less than or equal to unity, and that all roots with unit magnitude are simple. [2]

  5. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    General linear methods — a class of methods encapsulating linear multistep and Runge-Kutta methods; Bulirsch–Stoer algorithm — combines the midpoint method with Richardson extrapolation to attain arbitrary order; Exponential integrator — based on splitting ODE in a linear part, which is solved exactly, and a nonlinear part

  7. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  8. Numerov's method - Wikipedia

    en.wikipedia.org/wiki/Numerov's_method

    Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.

  9. Multistep methods - Wikipedia

    en.wikipedia.org/?title=Multistep_methods&...

    Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Linear ...