enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydronic balancing - Wikipedia

    en.wikipedia.org/wiki/Hydronic_balancing

    Hydronic balancing, also called hydraulic balancing, is the process of optimizing the distribution of water in a building's hydronic heating or cooling system by equalizing the system pressure. In a balanced system every radiator is set to receive the proper amount of fluid in order to provide the intended indoor climate at optimum energy ...

  3. Automatic balancing valve - Wikipedia

    en.wikipedia.org/wiki/Automatic_balancing_valve

    In a variable primary chilled-water system, the design flow rate is determined by the water flow velocity in the tube of the coils. At typical conditions, 6–7 feet per second (1.8–2.1 m/s) Maximum 12 ft/s (3.7 m/s) Minimum 1.5 ft/s (0.46 m/s) (based on a Reynolds number of 7500) Minimum flow is typically 50% or less of the design flow. [1]

  4. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold. Thus, mass, momentum and energy conservations must be employed together for description of flow in manifolds.

  5. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s, e.g. water. [clarify]

  6. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    It takes energy to push a fluid through a pipe, and Antoine de Chézy discovered that the hydraulic head loss was proportional to the velocity squared. [5] Consequently, the Chézy formula relates hydraulic slope S (head loss per unit length) to the fluid velocity V and hydraulic radius R: = =

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    The meter is "read" as a differential pressure head in cm or inches of water and is equivalent to the difference in velocity head. The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system.

  8. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    with v 1, v 2 and v 3 the mean flow velocity in the associated cross sections. Then, according to the Borda–Carnot equation (with loss coefficient ξ=1), the energy loss ΔE per unit of fluid volume and due to the pipe contraction is:

  9. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    The TKE can be defined to be half the sum of the variances σ² (square of standard deviations σ) of the fluctuating velocity components: = (+ +) = ((′) ¯ + (′) ¯ + (′) ¯), where each turbulent velocity component is the difference between the instantaneous and the average velocity: ′ = ¯ (Reynolds decomposition).

  1. Related searches how to calculate balancing valve velocity formula for water heater energy

    hydraulic balancing valveautomatic balancing valve
    automatic balancing valve diagramflow coefficient of valve
    hydronic balancing valves