Search results
Results from the WOW.Com Content Network
The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
Later the Geometry Center at the University of Minnesota sold a loosely bound copy of the notes. In 2002, Sheila Newbery typed the notes in TeX and made a PDF file of the notes available, which can be downloaded from MSRI using the links below. The book (Thurston 1997) is an expanded version of the first three chapters of the notes. In 2022 the ...
In particular if the surgery coefficient is of the form /, then the surgered 3-manifold is still the 3-sphere. If M {\displaystyle M} is the 3-sphere, L {\displaystyle L} is the right-handed trefoil knot , and the surgery coefficient is + 1 {\displaystyle +1} , then the surgered 3-manifold is the Poincaré dodecahedral space .
This is a list of particular manifolds, by Wikipedia page. See also list of geometric topology topics . For categorical listings see Category:Manifolds and its subcategories.
Implicit in this definition is the use of a suitable category, such as the category of differentiable manifolds or the category of piecewise-linear manifolds. A 3-manifold is irreducible if and only if it is prime, except for two cases: the product and the non-orientable fiber bundle of the 2-sphere over the circle are both prime but not ...
Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.
The simplest example is m = 1, n = 2, when π 1 (M) is the quaternion group of order 8. Prism manifolds are uniquely determined by their fundamental groups: if a closed 3-manifold has the same fundamental group as a prism manifold M, it is homeomorphic to M. Prism manifolds can be represented as Seifert fiber spaces in two ways.