Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
It states that the difference between the diffusive flux Fick's laws of diffusion of through the east and west faces of some volume corresponds to the change in the quantity in that volume. The diffusive coefficient of ϕ {\displaystyle \phi } and d ϕ d x {\displaystyle {\frac {d\phi }{dx}}} are required in order to reach a useful conclusion.
The boundary side coefficient is set to zero (cutting the link with the boundary) and the flux crossing this boundary is introduced as a source which is appended to any existing and terms. Subsequently the resulting set of equations is solved to obtain the two dimensional distribution of the property φ {\displaystyle \varphi {}}
The flux or flow of mass of the permeate through the solid can be modeled by Fick's first law. J = − D ∂ φ ∂ x {\displaystyle {\bigg .}J=-D{\frac {\partial \varphi }{\partial x}}{\bigg .}} This equation can be modified to a very simple formula that can be used in basic problems to approximate permeation through a membrane.
The diffusion equation is a parabolic partial differential equation.In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's laws of diffusion).
This relationship is expressed by Fick's law N A = − D A B d C A d x {\displaystyle N_{A}=-D_{AB}{\frac {dC_{A}}{dx}}} (only applicable for no bulk motion) where D is the diffusivity of A through B, proportional to the average molecular velocity and, therefore dependent on the temperature and pressure of gases.
Fick's law describes diffusion of an admixture in a medium. The concentration of this admixture should be small and the gradient of this concentration should be also small. The driving force of diffusion in Fick's law is the antigradient of concentration, − ∇ n {\displaystyle -\nabla n} .
The first term corresponds to Fick's law of diffusion, which gives the flux due to diffusion down the concentration gradient, i.e., from high to low concentration. The constant D A is the diffusion constant of the ion A.