enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Misuse of p-values - Wikipedia

    en.wikipedia.org/wiki/Misuse_of_p-values

    This means that the p-value is a statement about the relation of the data to that hypothesis. [2] The 0.05 significance level is merely a convention. [3] [5] The 0.05 significance level (alpha level) is often used as the boundary between a statistically significant and a statistically non-significant p-value. However, this does not imply that ...

  3. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  4. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    For the null hypothesis to be rejected, an observed result has to be statistically significant, i.e. the observed p-value is less than the pre-specified significance level . To determine whether a result is statistically significant, a researcher calculates a p -value, which is the probability of observing an effect of the same magnitude or ...

  5. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average. The p-value does not provide the probability that either the null hypothesis or its opposite is correct (a common source of confusion). [36]

  6. Data dredging - Wikipedia

    en.wikipedia.org/wiki/Data_dredging

    The red dashed line indicates the commonly used significance level of 0.05. If the data collection or analysis were to stop at a point where the p-value happened to fall below the significance level, a spurious statistically significant difference could be reported.

  7. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0. Or, if we say, the statistic is performed at level α, like 0.05, then we allow to falsely reject ...

  8. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    It enters all analysis of variance problems via its role in the F-distribution, which is the distribution of the ratio of two independent chi-squared random variables, each divided by their respective degrees of freedom. Following are some of the most common situations in which the chi-squared distribution arises from a Gaussian-distributed sample.

  9. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    [13] [14] [15] The apparent contradiction stems from the combination of a discrete statistic with fixed significance levels. [16] [17] Consider the following proposal for a significance test at the 5%-level: reject the null hypothesis for each table to which Fisher's test assigns a p-value equal to or smaller than 5%. Because the set of all ...