enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence.

  4. Microsoft Math Solver - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Math_Solver

    Microsoft Math Solver (formerly Microsoft Mathematics and Microsoft Math) is an entry-level educational app that solves math and science problems. Developed and maintained by Microsoft, it is primarily targeted at students as a learning tool. Until 2015, it ran on Microsoft Windows.

  5. Look-and-say sequence - Wikipedia

    en.wikipedia.org/wiki/Look-and-say_sequence

    [2] [3] The idea of the look-and-say sequence is similar to that of run-length encoding. If started with any digit d from 0 to 9 then d will remain indefinitely as the last digit of the sequence. For any d other than 1, the sequence starts as follows: d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …

  6. SageMath - Wikipedia

    en.wikipedia.org/wiki/SageMath

    Both binaries and source code are available for SageMath from the download page. If SageMath is built from source code, many of the included libraries such as OpenBLAS, FLINT, GAP (computer algebra system), and NTL will be tuned and optimized for that computer, taking into account the number of processors, the size of their caches, whether there is hardware support for SSE instructions, etc.

  7. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  8. Z3 Theorem Prover - Wikipedia

    en.wikipedia.org/wiki/Z3_Theorem_Prover

    The solver can be built using Visual Studio, a makefile or using CMake and runs on Windows, FreeBSD, Linux, and macOS. The default input format for Z3 is SMTLIB2 . It also has officially supported bindings for several programming languages , including C , C++ , Python , .NET , Java , and OCaml .

  9. ACORN (random number generator) - Wikipedia

    en.wikipedia.org/wiki/ACORN_(random_number...

    In addition, recent research has shown that the ACORN generators pass all the tests in the TestU01 test suite, current version 1.2.3, with an appropriate choice of parameters and with a few very straightforward constraints on the choice of initialisation; it is worth noting, as pointed out by the authors of TestU01, that some widely-used pseudo ...