Search results
Results from the WOW.Com Content Network
For example, if one starts with Euler's totient function φ, and repeatedly applies the transformation process, one obtains: φ the totient function; φ ∗ 1 = I, where I(n) = n is the identity function; I ∗ 1 = σ 1 = σ, the divisor function; If the starting function is the Möbius function itself, the list of functions is: μ, the Möbius ...
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [ i ] [ ii ] [ 2 ] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula .
This group can be given the structure of a complex manifold in such a way that composition and inversion are holomorphic maps. The Möbius group is then a complex Lie group . The Möbius group is usually denoted Aut ( C ^ ) {\displaystyle \operatorname {Aut} ({\widehat {\mathbb {C} }})} as it is the automorphism group of the Riemann sphere.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
A simple further example of a Möbius plane can be achieved if one replaces the real numbers by rational numbers. The usage of complex numbers (instead of the real numbers) does not lead to a Möbius plane, because in the complex affine plane the curve x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} is not a circle-like curve, but a hyperbola-like one.
An example of such linear fractional transformation is the Cayley transform, which was originally defined on the 3 × 3 real matrix ring. Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical geometry , number theory (they are used, for example, in Wiles's proof ...
One known example of this kind of memory is what happens to pancreatic cells when they are exposed to a large amount of sugar. In response, they release into the bloodstream a pulse of insulin, a ...
The relation of the Mellin transformation of the summatory function of a sequence to the DGF of a sequence provides us with a way of expressing arithmetic functions () such that (), and the corresponding Dirichlet inverse functions, (), by inversion formulas involving the summatory function, defined by