Search results
Results from the WOW.Com Content Network
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
It is widely used in analysis of three-phase electric power circuits. The Y-Δ transform can be considered a special case of the star-mesh transform for three resistors . In mathematics, the Y-Δ transform plays an important role in theory of circular planar graphs .
Symmetrical components are most commonly used for analysis of three-phase electrical power systems. The voltage or current of a three-phase system at some point can be indicated by three phasors, called the three components of the voltage or the current. This article discusses voltage; however, the same considerations also apply to current.
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
In a normal alternating current power system, the current varies sinusoidally at a specific frequency, usually 50 or 60 hertz.When a linear time-invariant electrical load is connected to the system, it draws a sinusoidal current at the same frequency as the voltage, although not always in phase with the voltage).
Assuming the desired voltage is the same on the two and three phase sides, the Scott-T transformer connection (shown right) consists of a centre-tapped 1:1 ratio main transformer, T1, and a √ 3 /2(≈86.6%) ratio teaser transformer, T2. The centre-tapped side of T1 is connected between two of the phases on the three-phase side.
Three-phase electrical generation is very common. The simplest way is to use three separate coils in the generator stator, physically offset by an angle of 120° (one-third of a complete 360° phase) to each other. Three current waveforms are produced that are equal in magnitude and 120° out of phase to each other.