Search results
Results from the WOW.Com Content Network
A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.
In the armature, an electromotive force is created by the relative motion of the armature and the field. When the machine or motor is used as a motor, this EMF opposes the armature current, and the armature converts electrical power to mechanical power in the form of torque, and transfers it via the shaft. When the machine is used as a ...
Separately excited DC motors are suitable for control applications because of separate field and armature circuit. [1] Two ways to control DC separately excited motors are: Armature Control and Field Control. [2] A DC motor consists of two parts: a rotor and a stator. [3] The stator consists of field windings while the rotor (also called the ...
A DC motor's speed and torque characteristics vary according to three different magnetization sources, separately excited field, self-excited field or permanent-field, which are used selectively to control the motor over the mechanical load's range. Self-excited field motors can be series, shunt, or a compound wound connected to the armature.
AC induction motors also use field coils on the stator, the current on the rotor being supplied by induction in a squirrel cage. For generators, the field current is smaller than the output current. [note 2] Accordingly, the field is mounted on the rotor and supplied through slip rings. The output current is taken from the stator, avoiding the ...
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.
A compensation winding in a DC shunt motor is a winding in the field pole face plate that carries armature current to reduce stator field distortion.Its purpose is to reduce brush arcing and erosion in DC motors that are operated with weak fields, variable heavy loads or reversing operation such as steel-mill motors.
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...