Search results
Results from the WOW.Com Content Network
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs. [1] [2] This involves estimating sensitivity indices that quantify the influence of an input or group of inputs on the output.
One can use sensitivity indices (see variance-based sensitivity analysis) to define the most influential variables for decomposition or choose them manually according to the decision-problem context (for example, only those input variables that the decision-maker can act upon). Two to three input variables, ordered by decreasing value of their ...
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [1] [2] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...
OpenStudio Analysis Framework and Spreadsheet: [9] A front-end for the OpenStudio Server, allowing for users to create large-scale cloud analyses using OpenStudio measures. SALib: [10] A Python library for general sensitivity analysis, which can be used with user-defined scripts to run EnergyPlus and extract results.
EE is applied to identify non-influential inputs for a computationally costly mathematical model or for a model with a large number of inputs, where the costs of estimating other sensitivity analysis measures such as the variance-based measures is not affordable. Like all screening, the EE method provides qualitative sensitivity analysis ...
[1] [2] In biomedical engineering, sensitivity analysis can be used to determine system dynamics in ODE-based kinetic models. Parameters corresponding to stages of differentiation can be varied to determine which parameter is most influential on cell fate.