enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  4. Zero-velocity surface - Wikipedia

    en.wikipedia.org/wiki/Zero-velocity_surface

    Jacobi constant, a Zero Velocity Surface and Curve (also Hill's curve) [1] A zero-velocity surface is a concept that relates to the N-body problem of gravity. It represents a surface a body of given energy cannot cross, since it would have zero velocity on the surface. It was first introduced by George William Hill. [2]

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    A particular solution can be obtained by setting the initial values, which fixes the values of the constants. Stated formally, in general, an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠ dr / dt ⁠), and its acceleration (the second derivative of r, a = ⁠ d 2 r / dt ...

  6. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    At the infinity (,) =, so =, or, in coordinates adjusted to the local time dilation, =; that is, time dilation due to acquired velocity (as measured at the falling body's position) equals to the gravitational time dilation in the well the body fell into. Applying this argument more generally one gets that (under the same assumptions on the ...

  7. Tautochrone curve - Wikipedia

    en.wikipedia.org/wiki/Tautochrone_curve

    The simplest solution to the tautochrone problem is to note a direct relation between the angle of an incline and the gravity felt by a particle on the incline. A particle on a 90° vertical incline undergoes full gravitational acceleration g {\displaystyle g} , while a particle on a horizontal plane undergoes zero gravitational acceleration.

  8. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.