Search results
Results from the WOW.Com Content Network
Such questions are usually more difficult to solve than regular mathematical exercises like "5 − 3", even if one knows the mathematics required to solve the problem. Known as word problems , they are used in mathematics education to teach students to connect real-world situations to the abstract language of mathematics.
The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 . A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1. Or x and y can both be treated as unknowns, and then there are many solutions to the equation; a symbolic solution is (x, y) = (a + 1, a), where the variable a may take any value. Instantiating a symbolic solution with specific numbers ...
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a]
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
For the Diophantine equation a n/m + b n/m = c n/m with n not equal to 1, Bennett, Glass, and Székely proved in 2004 for n > 2, that if n and m are coprime, then there are integer solutions if and only if 6 divides m, and a 1/m, b 1/m, and c 1/m are different complex 6th roots of the same real number.
In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...