Search results
Results from the WOW.Com Content Network
The involute gear profile, sometimes credited to Leonhard Euler, [1] was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with.
Involute teeth of spur gears, helical gears, and worms are those in which the profile in a transverse plane (exclusive of the fillet curve) is the involute of a circle. [ 1 ] Lands
The same involute gear may be used under conditions that change its operating pitch diameter and pressure angle. Unless there is a good reason for doing otherwise, it is practical to consider that the pitch and the profile angle of a single gear correspond to the pitch and the profile angle of the hob or cutter used to generate its teeth.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The most common profiles of modern gear teeth are involutes of a circle. In an involute gear system, the teeth of two meshing gears contact at a single instantaneous point that follows along a single straight line of action. The forces the contacting teeth exert on each other also follow this line and are normal to the teeth.
In involute gears, the tooth profile is generated by the involute of the base circle. The radius of the base circle is somewhat smaller than that of the pitch circle Base pitch, normal pitch, p b In involute gears, distance from one face of a tooth to the corresponding face of an adjacent tooth on the same gear, measured along the base circle
Bevel gears are gears where the axes of the two shafts intersect and the tooth-bearing faces of the gears themselves are conically shaped. Bevel gears are most often mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well. [1] The pitch surface of bevel gears is a cone, known as a pitch cone. Bevel gears ...
Pressure angles. Pressure angle in relation to gear teeth, also known as the angle of obliquity, [1] is the angle between the tooth face and the gear wheel tangent. It is more precisely the angle at a pitch point between the line of pressure (which is normal to the tooth surface) and the plane tangent to the pitch surface.