Search results
Results from the WOW.Com Content Network
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
The following greedy algorithm finds a solution that contains at least 1/2 of the optimal number of intervals: [8] Select the interval, x, with the earliest finishing time. Remove x, and all intervals intersecting x, and all intervals in the same group of x, from the set of candidate intervals. Continue until the set of candidate intervals is ...
By the previous lemma, at that point the sum of all other greedy bundles was at least 8/3. The algorithm arrives at x afterwards. Once the algorithm adds x to some bin P j, the sum of P j becomes at least 8/3+1/3=3, so no more items are added into P j. So P j contains only one input with size in [1/3,1).
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
Once the greedy choice is made, the problem reduces to finding an optimal solution for the subproblem. If A is an optimal solution to the original problem S containing the greedy choice, then A ′ = A ∖ { 1 } {\displaystyle A^{\prime }=A\setminus \{1\}} is an optimal solution to the activity-selection problem S ′ = { i ∈ S : s i ≥ f 1 ...