Search results
Results from the WOW.Com Content Network
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.
With this framework we apply the cover-up rule to solve for A, B, and C. D 1 is x + 1; set it equal to zero. This gives the residue for A when x = −1. Next, substitute this value of x into the fractional expression, but without D 1. Put this value down as the value of A. Proceed similarly for B and C. D 2 is x + 2; For the residue B use x = −2.
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a]
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
With n, x, y, z ∈ N (meaning that n, x, y, z are all positive whole numbers) and n > 2, the equation x n + y n = z n has no solutions. Most popular treatments of the subject state it this way. It is also commonly stated over Z: [16] Equivalent statement 1: x n + y n = z n, where integer n ≥ 3, has no non-trivial solutions x, y, z ∈ Z.
−λ here is the eigenvalue for both differential operators, and T(t) and X(x) are corresponding eigenfunctions. We will now show that solutions for X(x) for values of λ ≤ 0 cannot occur: Suppose that λ < 0. Then there exist real numbers B, C such that
To find the amplitudes for reflection and transmission for incidence from the left, we set in the above equations A → = 1 (incoming particle), A ← = √ R (reflection), B ← = 0 (no incoming particle from the right) and B → = √ Tk 1 /k 2 (transmission [1]). We then solve for T and R. The result is: